If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+1=10
We move all terms to the left:
n2+1-(10)=0
We add all the numbers together, and all the variables
n^2-9=0
a = 1; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·1·(-9)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*1}=\frac{-6}{2} =-3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*1}=\frac{6}{2} =3 $
| -c/2=0.97 | | 2x/3+10=4x/5 | | -2=x+5/7 | | 51+90+w=180 | | 18r=-21r2 | | 3×+1-5×=4x-11 | | -6|y+3|=-42 | | 83+10x=90 | | 1.6s=1.92 | | Y=2+3x/5 | | 5=27-b | | X+5y=8y+20 | | -(5a+14)=3(5a-13) | | 3(4-4k)=4(-5-k) | | |-10+8a|+3=-15 | | -0.5y=-73 | | 5s+1=11 | | 53-y=179 | | 6x-12-2x=-2-6x+50 | | (50.9+x)/7=8.5 | | (5c+35)+1/2(c+92=180 | | -12c+13=-11 | | 2(3p+4)–2/3p=1/3(9+p) | | 3.50x=7.50=25.00 | | 9x²-8x+5=0 | | x/2-27=-25 | | 4=-2-z/2 | | x/6+1/3=x/18-1/9 | | q-1.7=-2.5 | | r/2+-3.3=-0.30 | | (18.8+x)/6=4.3 | | 6p-2(p+6)=10p |