n2+2n+4=168

Simple and best practice solution for n2+2n+4=168 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n2+2n+4=168 equation:



n2+2n+4=168
We move all terms to the left:
n2+2n+4-(168)=0
We add all the numbers together, and all the variables
n^2+2n-164=0
a = 1; b = 2; c = -164;
Δ = b2-4ac
Δ = 22-4·1·(-164)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{165}}{2*1}=\frac{-2-2\sqrt{165}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{165}}{2*1}=\frac{-2+2\sqrt{165}}{2} $

See similar equations:

| 0.7+0.56x=-0.28x-0.14 | | 4x+3x-8=41 | | 2.50=3x=13 | | k^2-11=0 | | −5(2x+6)+3x=19 | | (x+20)=(5x-4) | | 6x=54=12x | | 71+32+x=180 | | (8x-44)×3=180 | | -13.7=-2.5+w/7 | | 9=1/5p-3 | | 0=25x= | | -2(5x-10)=-5+3x-13x+25 | | 3x+5-6=2x+8 | | 24=4x-17 | | x+80+(3x-22)=180 | | 6(3c-4)=18c-24 | | 21k=20-11 | | r/4+21=57 | | 4/5=5/n | | 2x/x-3=x-2/x-5 | | 4x=4(x-2) | | x=71+32 | | z÷10+8=13 | | 8+3(r+5=5 | | 5b-3b+4=4 | | 6(-3x-4)=8(5x-3) | | 3/2x+4=25 | | -8=-16x-10-5+15x | | x=60+57 | | 5x-(x-18)=6-2 | | -5(3b-4)=1/2b+2b-120 |

Equations solver categories