If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+3n-180=0
We add all the numbers together, and all the variables
n^2+3n-180=0
a = 1; b = 3; c = -180;
Δ = b2-4ac
Δ = 32-4·1·(-180)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-27}{2*1}=\frac{-30}{2} =-15 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+27}{2*1}=\frac{24}{2} =12 $
| 4n/11=8 | | -8=2-2/3b | | X+23=4x-13 | | 4+1/3x=-2 | | -8x+6=14x-93 | | 2+–2z=10 | | -6(x+-1)=2(1-3x)-7 | | 2x+3÷4-4x-7÷2+5x+13÷3=4x+2 | | 16=5z+11 | | F(x)=70*x | | 4m-10-6=-2(m+5) | | F(x)=70×x | | 5) 2(3x+1)=11 | | 8b=29.6 | | -11+m7=-2 | | 4x+7=-3+35 | | ((2y+7)/3)+5y=-6 | | (2y+7)/3)+5y=-6 | | 28=4(x2) | | -2(4+3x)=-2x | | 5d-15d=0 | | 3c+12c=0 | | 1/2(3p-1)=p+2 | | 12+6x=6x-13 | | b-7b=0 | | (x^2+9x-10)(x+4)=0 | | X-11(x-6)=-138 | | 10+5m=55 | | 4(-7+2x)=84 | | 2+4X²=-6x | | 35+-1.5y=35 | | 11y-(y-7)×8=92 |