If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+42n=0
We add all the numbers together, and all the variables
n^2+42n=0
a = 1; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·1·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*1}=\frac{-84}{2} =-42 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*1}=\frac{0}{2} =0 $
| 9^2n=1/3 | | x-20-2x=35 | | 9+.30p=5+.40p | | -80=x/15 | | 7(x)=150 | | 3x-4(-4x-17)=-122 | | -10=3/8y+14 | | -2/3x+2=8 | | X+x+0.45+x+0.45+0.05=9.23 | | x-75=-25 | | 6x-2(-2x-7)=74 | | 8x/2=14.76 | | a/5+2=14 | | 2(v+1)+7v=4(v+1)-7 | | 45=-4.9x^2+45 | | x=9=2x-10 | | 4=64-5c+ | | -4x+6(3x+12)=2 | | 2(n+5)+3(n-2)=4(n-1)+3(n+4) | | 40=40k-32 | | (x/2)-(2/3x)=2/3 | | 4(2x-3)=2(3x+1 | | 4(2x-3=2(3x+1) | | 3x-5(3x-14)=190 | | X/4+2=3x/4 | | 3.6x+4=2.8x-6 | | 2(w-1)+4w=3(w-1)-7 | | 18+7=-5(4x-5) | | -2x+3(-3x+14)=-68 | | 3x=2x+12=6 | | p-7/5=7 | | 4(2x-3=2(3x+1 |