If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+6n+6=2
We move all terms to the left:
n2+6n+6-(2)=0
We add all the numbers together, and all the variables
n^2+6n+4=0
a = 1; b = 6; c = +4;
Δ = b2-4ac
Δ = 62-4·1·4
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5}}{2*1}=\frac{-6-2\sqrt{5}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5}}{2*1}=\frac{-6+2\sqrt{5}}{2} $
| 4x-2(8x)=-12 | | v2+4v=-3 | | 17x+34=9 | | 3n-4=68 | | w-15=13 | | 4x-17=x+19 | | -4x+(7x-6)=6 | | X-3+6x=4x+3-x+2 | | 2*x-3=6 | | x/x-36=0,4 | | -9v=81 | | 0,4=x/x+36 | | 3x-8(8x)=24 | | 2+6b=62 | | Y=-2x/1-1 | | x^2=4(9) | | x^2=4(5) | | 2(10+k)=22 | | 4^2=9x | | 3/45=x/180x= | | x/0.25=x+9 | | 4x+1)=6+3x | | x/0.25=x-9 | | 3/45=x/180 | | x^2+20x=40 | | 2(4x+1)-(3x-1)=5(3-X)-9 | | 1.5=-x-5 | | -7·x-3=-45 | | 3c-19=12 | | 180x=7x+5x | | 180x=7x+5x180=12x | | 2*x/3=2x-3 |