If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+8=9
We move all terms to the left:
n2+8-(9)=0
We add all the numbers together, and all the variables
n^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $
| -36-3p=-7(p+4) | | 14=-4t+6 | | 12y-18=(6y-9) | | 10p-5p-3=17 | | (-3x+12)/4=9 | | 3(q-7)11+8=8 | | 17=5+2w | | -42x=6(-3x-6) | | 9m/15=6/15+1 | | X+6=6(x-11) | | 5.2=a-0,4 | | 9m/15=16/15 | | 5(-6n-1)=-5-2n | | 7x-44=12 | | 64=3(n-8)+5(n+6) | | x+9999999999999999999999999999999999999999999999999999999999999999999999=0 | | 23x=81 | | 4(z/2+5)=16 | | 22+T=s | | 10=-1/5(15x-5)+1 | | 12=b-48 | | 9=-3-3-r | | 44+106+95+x=360 | | -3x+2x=-12-3x | | 6+x/2=3 | | 4y(3y-1)+4(3y-1)=0 | | 24-3n=8(7n+3) | | 3/u-1/2=1/2u+13/4 | | -5-7n=6+5(n-7) | | -9(-1+x)=153 | | 3(-8x+1)=25-2x | | 6=4t-10 |