If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+n-1176=0
We add all the numbers together, and all the variables
n^2+n-1176=0
a = 1; b = 1; c = -1176;
Δ = b2-4ac
Δ = 12-4·1·(-1176)
Δ = 4705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4705}}{2*1}=\frac{-1-\sqrt{4705}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4705}}{2*1}=\frac{-1+\sqrt{4705}}{2} $
| 87=3g+18 | | -n/22+12/11=0 | | 2x–15=5x | | 12/11=n/22 | | 21/n=7/5 | | 21/n=7/6 | | (x+4)/18=(1/9)+(x-9)/6 | | x+4/18=1/9+x-9/6 | | 4x+x-4=3x+6 | | X(5)-5y=10 | | X(5)+5y=10 | | 2(5)+5y=5 | | 3÷4y=-6 | | Y=24/6x | | 4+d=2+2d | | 2x^2-10x-14=2x | | X3+4x+16=0 | | 8(2a+9)=16a+72 | | 5^(2x)-12(5^x)+20=0 | | 4/2x-1+3/2x+1=7/2x | | x²+64x-240=0 | | F(n)=300-(1/2)n | | 6(v-3)-7=9v-2 | | 2x-3=-3+3(x-7) | | 7(a-3)-7=6a+6 | | 7b+4=5+6(b-6) | | (2x)*(2,5x)=17 | | x-5/3=12x+4/7 | | z²+8z+20=0 | | 12x=-9x | | 100/30=n/20 | | (x-7)2=144 |