If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+n-132=0
We add all the numbers together, and all the variables
n^2+n-132=0
a = 1; b = 1; c = -132;
Δ = b2-4ac
Δ = 12-4·1·(-132)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-23}{2*1}=\frac{-24}{2} =-12 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+23}{2*1}=\frac{22}{2} =11 $
| 15.5+.7x=19.7 | | 8=4/5w | | -28=w/6 | | 0.2(x-8)=0.3x+5-3+0.3x | | 3x+7-x=2x+8 | | (x-17)^2-49=0 | | 49+8u=15u | | (x-17)^2=49 | | -2x+3=5x-4-1 | | 48+8u=15u | | 3×4+4y=28 | | 0=x/6-3 | | 5^(2x+4)=30 | | 2p=-3-6/4 | | 3(x-6)-8x+2+B(2x+1)=0 | | -207=5(8x+3)+8x | | 6x=7+2x | | 4(3k-6)=6(3k+5 | | 6y-15=19 | | 18-6x=-7(x-2) | | 4y^2-4y=48 | | 2a-3(a-4)=-2 | | 142=1/2h(7+10 | | 0.75*10^w/3=30 | | A=1/2h(7+10) | | 6(u+3)=7 | | 5+(1+s)=-9s+6 | | 6c+2=2c+18 | | 2x-9=25-5 | | 94=4x-7 | | 2x²-3x-5=0 | | 15+20x-10=15x-5x+50 |