If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+n-15=0
We add all the numbers together, and all the variables
n^2+n-15=0
a = 1; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·1·(-15)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{61}}{2*1}=\frac{-1-\sqrt{61}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{61}}{2*1}=\frac{-1+\sqrt{61}}{2} $
| 12t-6t-4t+2t+2=18 | | 5(x+12)-18=57 | | 8(p−90)=72 | | 4(x+17)-10=46 | | 6(f+5)=84 | | 16k+6k-17k=5 | | 8(x-15)-12=-100 | | 8x+12=-x-15 | | j-6/8=9 | | 10a-6a=16 | | -5n-16=-n+20 | | 3(x+10)+17=32 | | Y=100-225x^2 | | 8(x+7)=56 | | 295=72-w | | 8+22x+6x+4=180 | | b+18=50 | | 2x+36=86 | | 12c-8c-3c+2=17 | | x+x+40+x+40+220=1440 | | j+13/4=5 | | 9(x+13)-12=24 | | 1.5y=-2/1.5+18/1.5 | | 12÷x-1=2 | | 10+8=5x+23 | | p/5-9=23 | | 55=23+8w | | 4(x+9)+18=42 | | 2(x-2)-18=-14 | | 15c-14c+4=18 | | 0.2x-5=11 | | t+25/7=5 |