If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+n-200=0
We add all the numbers together, and all the variables
n^2+n-200=0
a = 1; b = 1; c = -200;
Δ = b2-4ac
Δ = 12-4·1·(-200)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{89}}{2*1}=\frac{-1-3\sqrt{89}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{89}}{2*1}=\frac{-1+3\sqrt{89}}{2} $
| 12x-37=5x+54 | | 10+3x=4x-7x+22 | | 13x^2+145x-64=0 | | 0.5x(4+1)=15 | | X^2-120x+3570=0 | | 15=5h(4+1) | | 5(m+2)-9=-17-m | | 15=1/2*x(4+1) | | 9(m+2)=-6+(m+7) | | 15=1/2x(4+1) | | 8(m-5)=23m-8 | | a-10•3=-4 | | 2(10@6x)=x-8 | | 4x-1=2(2x-3)+5x | | 4x-1=2(2x-3)5x | | 8x+13=200 | | 2(12-y)=13-(2y-1) | | 7-+2n=n-14 | | 7-+2n=n-+14 | | q+1=2q–5 | | 4x+-2=4x+2 | | 5(x+3)=5x+10 | | 2(2-x)=4(x+2) | | 24x^2-4x-3=0 | | 3x/8()=123() | | -5b-+6=-11 | | 6-6x=-4x+2 | | 12x+3=1/3(9x+18) | | 6-3x=-5x+2 | | 28-8x=8(x+3)+2 | | 8=14-k | | 3(j+1)=15 |