If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+n=15
We move all terms to the left:
n2+n-(15)=0
We add all the numbers together, and all the variables
n^2+n-15=0
a = 1; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·1·(-15)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{61}}{2*1}=\frac{-1-\sqrt{61}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{61}}{2*1}=\frac{-1+\sqrt{61}}{2} $
| 9.51+10.8r=8.7r+1.84 | | -10x+12=-3x+40 | | 0.004(5-k)+0.09(k-4)=1 | | -2=-4(n+15)+-14 | | 5(1-x)+4=2(-3-x) | | 1/2x+3(2x+5)=97.5 | | 5x^2+12x+21=0 | | 10x2+15x-5=0 | | 2(2x+15)=5x+17 | | 203x+609=1015 | | -6=-m-4 | | -6a+3(3+5a)-10=-22 | | P-1=29;p | | 12w-8w+1=9 | | 3x+2-x-4=-3+8 | | 15.31+2.6j=-5.69+1.2j | | 2(3x+2)+8x-1+27+8x=360 | | 1/4x2/5=6/51/3-2x | | 8r+48=4r+24+8r−8r | | 4(1.75y-3.5)+1.25y=y | | 490=7(3x) | | -26+4a=9(5a-3) | | 4r/2+48=4r+24+4r/2−8r | | 4=4(n-18)-4 | | 8r-6r+3=15 | | 16d+-d+8=-7 | | 4(8-y)-2y=16 | | ½(8x–12)=-24x+(2x–14) | | 498-y0-2y=16 | | 6(b+5)/2=39 | | 12y-8÷6=4y+3 | | 23+2=15x+48x+6 |