If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2-10=-9
We move all terms to the left:
n2-10-(-9)=0
We add all the numbers together, and all the variables
n^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $
| 15/3x5=1 | | x−85=19 | | 10^(5x+6)=0.0001 | | m2-88=-7 | | x+2/12-2x-3/9=4-3x/18+x/6 | | 49=8d | | -10m2=-25000 | | Z+3(z)=48 | | r/6+2=16 | | 2x+1=4x=-3 | | 5x+20=x380 | | 2x^2+10=-6 | | 9.59+18.5j+1.63=-16.72+16.3j | | -10+6w=8w | | 2+12m=14+8m | | -19k-8+17k=3k-13 | | 13-3z=-8z-16-11 | | 3j+6j+3=8j+9 | | 7/9x-9+9=2 | | 10.2k-11.99=-6.1k+13.7k | | 8+5m=4m-1 | | -10-4z+3=9-2z | | 7/9x+9=2 | | 8r=10r-10 | | -10-7u=10-9u | | -4d=90 | | -8z-3=-7z-10 | | 9+4p=7p | | 2x–5+2x=4(3x–3)+3 | | 3(2x+3)−2(3x+2)=0 | | 4/9=x/5 | | -9=-10h+10 |