If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2-6n-59=-10
We move all terms to the left:
n2-6n-59-(-10)=0
We add all the numbers together, and all the variables
n^2-6n-49=0
a = 1; b = -6; c = -49;
Δ = b2-4ac
Δ = -62-4·1·(-49)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{58}}{2*1}=\frac{6-2\sqrt{58}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{58}}{2*1}=\frac{6+2\sqrt{58}}{2} $
| (3+2x)2=30 | | -2v-12=5(v-1) | | 3n-93=14n+6 | | (-3)-2x=(-13) | | 2(w-4)=5w+14 | | -2/3(5x-1)=8+4x | | x2-12x-90=-4 | | 11=5x-53 | | 11=5y-53 | | 5x/8-4=-7 | | 40/135=60/x | | 4÷w=-11 | | 6n-4n=-10 | | 10x-22=190 | | x2+16x+54=6 | | ((1/4)^x)=256 | | 17=6m+5-9m | | 5-r=7.1 | | 3/5m-2=-10 | | d=-20+11d | | 19x+4=60 | | x+3/4=83/3 | | 15x+6=28 | | k2-6k+2=-3 | | 2(10+4x)=68 | | x^2-16x+52=-6 | | 2n-18=22. | | 8x+13x+114=210 | | 5w+60=8w+60 | | 10k+3-2k=-3 | | 22=22x | | n2-14n-18=-3 |