n2=-14n-37

Simple and best practice solution for n2=-14n-37 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n2=-14n-37 equation:



n2=-14n-37
We move all terms to the left:
n2-(-14n-37)=0
We add all the numbers together, and all the variables
n^2-(-14n-37)=0
We get rid of parentheses
n^2+14n+37=0
a = 1; b = 14; c = +37;
Δ = b2-4ac
Δ = 142-4·1·37
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{3}}{2*1}=\frac{-14-4\sqrt{3}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{3}}{2*1}=\frac{-14+4\sqrt{3}}{2} $

See similar equations:

| (-7+i)/(8+9i)=0 | | C=-17x-1x^2 | | -6x^2-6x-72=0 | | 2x+48=4(2+3x) | | 7+2(x+6)=39 | | (3+8i)/(-1-6i)=0 | | (6x-1)+(x)=90 | | 9x+4=176 | | 5x+22=2(1+5x) | | 4x+52=5(2+5x) | | 7x(1+4)=35 | | 4x+36=3(1+5x) | | 10x+48=-8 | | (25/2)x^2+15x+(9/2)=0 | | 5x+45=5(1+3x) | | 4x-20=4(x+5) | | 8x-14=2x+2  | | 8^(2x)=32 | | 8^x=6.5 | | 5+4z=6z+11 | | 2(3z+1)=–2(z+3) | | 7x+15=112 | | 18x-5=61-4x | | 8+2m^2=158 | | 3(h-4)=-(1/2)(24-6h) | | 2=1.07^(x) | | (x+7)=55 | | 7x=11x=144 | | F(2)=2^x-8 | | 6x-7-19=7x+13-3x-21 | | 4^(x)-3=9x+7 | | (8t+8)(-2t+2)=0 |

Equations solver categories