If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=169
We move all terms to the left:
n2-(169)=0
We add all the numbers together, and all the variables
n^2-169=0
a = 1; b = 0; c = -169;
Δ = b2-4ac
Δ = 02-4·1·(-169)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-26}{2*1}=\frac{-26}{2} =-13 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+26}{2*1}=\frac{26}{2} =13 $
| 1u=-15 | | -22+3x=11 | | 3y+5y=18 | | -8+4v=2v+6 | | 0.4(2x+1/2)=3(0.2x+(−2))−4 | | 9/18=x/50 | | 2/a-1=3/9 | | 9/x=8/11 | | 12.6=b+4.1=8.5 | | 324=t2 | | 7v+v+5=-43 | | 15+42=8g | | 3d+d+2d=36 | | 4y-8=(79+y | | u2=256 | | -80=z+8z-8 | | 8+c=-25 | | 26-4x=2x | | 2g-9=23 | | 7n–6=8 | | 289=g2 | | 5=1r | | 6x+13+6x+13+2x+3+2x+3=128 | | 2(3+r)-17=-25 | | 39=9y-6 | | 135^2x9=x | | 4k−3=3k−6 | | 6=6(z+10)+12 | | 2x+3=x─4 | | -12+3a=2a | | F(5)=12-4x | | 3x-9+3x-9+2x=46 |