n2=190,

Simple and best practice solution for n2=190, equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n2=190, equation:



n2=190.
We move all terms to the left:
n2-(190.)=0
We add all the numbers together, and all the variables
n2-190=0
We add all the numbers together, and all the variables
n^2-190=0
a = 1; b = 0; c = -190;
Δ = b2-4ac
Δ = 02-4·1·(-190)
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{190}}{2*1}=\frac{0-2\sqrt{190}}{2} =-\frac{2\sqrt{190}}{2} =-\sqrt{190} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{190}}{2*1}=\frac{0+2\sqrt{190}}{2} =\frac{2\sqrt{190}}{2} =\sqrt{190} $

See similar equations:

| 7(x-1)=3x+3 | | y4×=y7 | | 5(p+4)=3p−3 | | X=2+4t-0.5t | | (0.4)(x)=20 | | 1x()=9/11 | | 2x^-6=3x | | 6x+1/3=+1=x-3/6 | | 2/(x^2-2x+1)=0 | | 2p^2/4-1=3 | | 12a=+30 | | x2+6=15 | | X=2,y=-18 | | 3x+3/7=15 | | y^2/3=16 | | -6x+1=18 | | P=3x+7+3x+7+4x+2+4x+2 | | P=3x+7+3+7+4x+2+4x+2 | | 6x–10=2x+8 | | 3.t^{2}+6t+9=0 | | 4(2x−6)+9=3(x−7)+8x | | P=5x+5x+3x+6+3x+6 | | x2-9x=-8 | | 3.5x+2.3=9.3 | | 5x=5x=3x=6=3x=6 | | 3⁄4a+14=8 | | 23/x=124 | | 3/4a+14=-8 | | 23x-72=360 | | -14x+3=-8x-2 | | 8-5x=x+16 | | 3x(x-3)=6(x+3) |

Equations solver categories