n2=23

Simple and best practice solution for n2=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n2=23 equation:



n2=23
We move all terms to the left:
n2-(23)=0
We add all the numbers together, and all the variables
n^2-23=0
a = 1; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·1·(-23)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{23}}{2*1}=\frac{0-2\sqrt{23}}{2} =-\frac{2\sqrt{23}}{2} =-\sqrt{23} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{23}}{2*1}=\frac{0+2\sqrt{23}}{2} =\frac{2\sqrt{23}}{2} =\sqrt{23} $

See similar equations:

| 3(p+1)-2=25-2p+1 | | 4x-8=-100 | | 4m+12=91m-41 | | z5−7=4.2 | | F(x)=2x2+3x-1 | | 2n–5=8n+7 | | Y=1/8x+9 | | .419=2/3x | | 9(2x-9.5)=-16.5+8 | | 6x2–4x=10 | | -4=3+a | | x÷3.2=5.5 | | y2=916 | | j^2-36=0 | | 9^2x–2=5 | | 10a−3−4a=6a−3 | | -12+6x=2(21x+40)+x | | k2=9 | | 6y+1=4y+3 | | z–8/6=-1 | | 295+y)=18 | | z–86=-1 | | 10x+18-8x=4 | | 44=4(s+3) | | 44=4(s+3)s=-7s=8 | | 3x-1+x+2=9 | | 1-2x=(1-x) | | 5(x+6)=2(x-3)+4 | | 2n+18=16-4n-28 | | 3x^2+6x-30=0-6 | | -7+3y=8 | | -(5a+6)=2(3a=8) |

Equations solver categories