If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=36
We move all terms to the left:
n2-(36)=0
We add all the numbers together, and all the variables
n^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| (3+9i)(-3+9i)=0 | | 174=-w+247 | | 8q–4q=20 | | 7x+1-3=4x+2+7x | | -x+164=289 | | x=2/3(180×x) | | 8a-6=35 | | 7x+6x-18=54-5x | | F(x)=2x^+16x-26 | | 4=3x-5(x+2) | | (5r-6)(2r-5)=0 | | 7x+5-4x=5x+8-2x-3x | | 3(n+2)=4(-2n+7) | | -12x-23=2x+13 | | 17+3x2=40 | | 1/11y-5=-9 | | -3(x-5)=52 | | 312.5=a+0.025a | | 3x+4+11(x-2)=6(2x+1) | | 5k-k=20 | | 2x²+10=0 | | 2x^2-12=-14x | | 34=u÷5+4 | | 30^2+40^2=c^2 | | 4x=7=-9 | | -2.4=-1.2a= | | 15=5(1+4a)=33 | | x2+5x=149 | | 7^x=16807 | | 40x+50=700 | | x/3-4=7-x/3 | | -15x+5=-6 |