If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=40
We move all terms to the left:
n2-(40)=0
We add all the numbers together, and all the variables
n^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| -7=-z/3 | | –4f+3=19 | | 0.2=-a/5 | | 3m-7-4m=11+5m | | |3x+1|=x+5 | | x+90+80=180 | | 7z+2=44 | | x+4=5x=5x+7 | | 3x^2+0.80x=0 | | h=0.10+9.75 | | 89x-890=267 | | -3.4=m/10 | | x+(6-x)+18=10x-6x | | -206=-8(7k-3)-4 | | 7x–35=5x+2x–27 | | -3g-2=7 | | 4x+7-6x+5=4x+4 | | x+(6-x)+18=10(6-x)+x | | x+1=-2+3x+1+6 | | -6=1.2k | | 4w+11=35 | | -104=-8(1-3b) | | 1/6(6x+24)-6=-1/4(8x-28) | | -4.8=-m/4 | | w–3+ 12=8 | | -2-3n=4-2n | | 4a-2=12a+14 | | 11=c+25 | | 5^2x-5(5^x)+6=0 | | 11/5(x-20)+6=2/5×-38 | | 7/3z=2 | | 45=11g |