If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=49
We move all terms to the left:
n2-(49)=0
We add all the numbers together, and all the variables
n^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| 32=8(u-3) | | 2v-2=2v-4 | | q/7-(-17)=21 | | 1/5(15q-5)=29 | | 2(s+13)=70 | | 6n^2+7n-10=0 | | 1/5(15q5)=29 | | 3(-4+6x)=144 | | 2+3z=5-3z | | g-21/8=6 | | 9x=14x-20 | | -3(y+-11)=51 | | s-5=65 | | -5/3m+5m=-55/12 | | -3(y+(-11))=51 | | -2(n-4)-(3n-1)=-2+2n-1 | | 4r2+10r=4 | | 96-x=187 | | 4f+6=39 | | (-1)=w+33/9 | | 25x+150=55x | | -7/2r=-63/4 | | 10=-5(g-91) | | 2p-1/3=5 | | 9+(1.20x)=12+(0.75x) | | (-1)=2k-5 | | w/2-(-2)=4 | | 7y+1=55 | | -5=h-13/(-9) | | 3x+5x=24x=3x | | z/2-(-13)=17 | | 9x^2+66x+132=0 |