If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=50
We move all terms to the left:
n2-(50)=0
We add all the numbers together, and all the variables
n^2-50=0
a = 1; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·1·(-50)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*1}=\frac{0-10\sqrt{2}}{2} =-\frac{10\sqrt{2}}{2} =-5\sqrt{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*1}=\frac{0+10\sqrt{2}}{2} =\frac{10\sqrt{2}}{2} =5\sqrt{2} $
| -4(x-7)=-20 | | 5=4p-2+1 | | 1.5*1.2=x | | 2a+5=8a-11 | | 41=2u-13 | | V=22,000-0.25x | | c/5-4=20 | | 2g-5=-11 | | 7x-23=2(3x+9) | | -4b-1=2 | | 11x-11=2(5x+7) | | 5x^2-18-8=0 | | 0.12+1.5=n+0.25 | | 1x-0.4x=18 | | 0.12+1.5=n+025 | | 289n=0 | | -44=12z | | -4x-24=16-14x | | 9x=3 | | 18+3y=-30 | | -2(4s-2)-4=-2(6s+2)-3 | | ((11x-33)/(x-3))=x | | -2(4s-2)-4=-2(6s | | 0.143y+6=-10 | | 1/7y+6=-10 | | 5x-80=14 | | w8=4. | | 2/3s=-5/9 | | 4x+5x+9=45 | | 3x+12=5×+30 | | -8p-2=-4-7p | | 5n=n=12 |