If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=8
We move all terms to the left:
n2-(8)=0
We add all the numbers together, and all the variables
n^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $
| 7(k+4)-2=3k-2 | | 12/19k=-32/19 | | 4p+2=-62-4p | | 3(8x+2)=-30 | | 52/9=x+5/18 | | 7(3x+2)-4=73 | | 11y+2=12y+8 | | 4x+12-2x=2(x-5)-5 | | 5/3x-1=8+4/3x | | -8=3(a-1) | | x/3.57=2.49 | | n2=25n2=36 | | 1x-10=12 | | 3/4=m+4 | | 3+3+7/8x=1/2x | | 7x=−10+8x | | 5(3x+3)=3(7x-1) | | 7x=−10+8x | | 5(s-1)-5=7s+4 | | -(8x-8)=8(x-3) | | 32+4x-10+6x=2(5x-4) | | 2-x^2-2=0 | | 5+3x=2x=6 | | 2-2(3x-10)+8x=7x+20+7x | | 8x-5=1-4x | | -2/3+x=8 | | -3x+12-9x+8=-3(4x-7) | | 0=-16^2+50t+6 | | n-14/15=-7/5 | | x-3+x-5=180 | | −3+5x=32 | | 3x+3x=20 |