If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=85
We move all terms to the left:
n2-(85)=0
We add all the numbers together, and all the variables
n^2-85=0
a = 1; b = 0; c = -85;
Δ = b2-4ac
Δ = 02-4·1·(-85)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{85}}{2*1}=\frac{0-2\sqrt{85}}{2} =-\frac{2\sqrt{85}}{2} =-\sqrt{85} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{85}}{2*1}=\frac{0+2\sqrt{85}}{2} =\frac{2\sqrt{85}}{2} =\sqrt{85} $
| m^-10m+11=0 | | m-13/3=-2 | | -4x-3+5x=-1 | | 39x-3=9 | | |t|−1.2=3.8 | | 6x-10x-11=8x-2x+2 | | 0=9x^2-4x-16 | | x2=1.69 | | 4s+2+55+67=180 | | 17h=15h+2 | | -6+48=-6v | | -2.77(g-4)+2.16=-6.15 | | -2(5y+1)=-4(y-6)-2 | | 3y(2y-4)=0 | | 3(5+3m)=24 | | 3e+90+60=180 | | 10k-5=15k+20 | | 3y(2y+4)=0 | | 19=t/2+16 | | -2(7-7q)=3(-6+6q) | | Y=-3/8x+7 | | 6n+2+50+80=180 | | n/3=–4 | | a2=150 | | -6x+8=4(5–x) | | z/4-13=-10 | | n3=–4 | | x^2+480x-4800=0 | | 1-9f=-10f-9 | | .5r+78.2=287 | | c2=150 | | 2.x+5=2x-15 |