If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying n = (4n + 1)(2n + 6) Reorder the terms: n = (1 + 4n)(2n + 6) Reorder the terms: n = (1 + 4n)(6 + 2n) Multiply (1 + 4n) * (6 + 2n) n = (1(6 + 2n) + 4n * (6 + 2n)) n = ((6 * 1 + 2n * 1) + 4n * (6 + 2n)) n = ((6 + 2n) + 4n * (6 + 2n)) n = (6 + 2n + (6 * 4n + 2n * 4n)) n = (6 + 2n + (24n + 8n2)) Combine like terms: 2n + 24n = 26n n = (6 + 26n + 8n2) Solving n = 6 + 26n + 8n2 Solving for variable 'n'. Reorder the terms: -6 + n + -26n + -8n2 = 6 + 26n + 8n2 + -6 + -26n + -8n2 Combine like terms: n + -26n = -25n -6 + -25n + -8n2 = 6 + 26n + 8n2 + -6 + -26n + -8n2 Reorder the terms: -6 + -25n + -8n2 = 6 + -6 + 26n + -26n + 8n2 + -8n2 Combine like terms: 6 + -6 = 0 -6 + -25n + -8n2 = 0 + 26n + -26n + 8n2 + -8n2 -6 + -25n + -8n2 = 26n + -26n + 8n2 + -8n2 Combine like terms: 26n + -26n = 0 -6 + -25n + -8n2 = 0 + 8n2 + -8n2 -6 + -25n + -8n2 = 8n2 + -8n2 Combine like terms: 8n2 + -8n2 = 0 -6 + -25n + -8n2 = 0 Factor out the Greatest Common Factor (GCF), '-1'. -1(6 + 25n + 8n2) = 0 Ignore the factor -1.Subproblem 1
Set the factor '(6 + 25n + 8n2)' equal to zero and attempt to solve: Simplifying 6 + 25n + 8n2 = 0 Solving 6 + 25n + 8n2 = 0 Begin completing the square. Divide all terms by 8 the coefficient of the squared term: Divide each side by '8'. 0.75 + 3.125n + n2 = 0 Move the constant term to the right: Add '-0.75' to each side of the equation. 0.75 + 3.125n + -0.75 + n2 = 0 + -0.75 Reorder the terms: 0.75 + -0.75 + 3.125n + n2 = 0 + -0.75 Combine like terms: 0.75 + -0.75 = 0.00 0.00 + 3.125n + n2 = 0 + -0.75 3.125n + n2 = 0 + -0.75 Combine like terms: 0 + -0.75 = -0.75 3.125n + n2 = -0.75 The n term is 3.125n. Take half its coefficient (1.5625). Square it (2.44140625) and add it to both sides. Add '2.44140625' to each side of the equation. 3.125n + 2.44140625 + n2 = -0.75 + 2.44140625 Reorder the terms: 2.44140625 + 3.125n + n2 = -0.75 + 2.44140625 Combine like terms: -0.75 + 2.44140625 = 1.69140625 2.44140625 + 3.125n + n2 = 1.69140625 Factor a perfect square on the left side: (n + 1.5625)(n + 1.5625) = 1.69140625 Calculate the square root of the right side: 1.300540753 Break this problem into two subproblems by setting (n + 1.5625) equal to 1.300540753 and -1.300540753.Subproblem 1
n + 1.5625 = 1.300540753 Simplifying n + 1.5625 = 1.300540753 Reorder the terms: 1.5625 + n = 1.300540753 Solving 1.5625 + n = 1.300540753 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.5625' to each side of the equation. 1.5625 + -1.5625 + n = 1.300540753 + -1.5625 Combine like terms: 1.5625 + -1.5625 = 0.0000 0.0000 + n = 1.300540753 + -1.5625 n = 1.300540753 + -1.5625 Combine like terms: 1.300540753 + -1.5625 = -0.261959247 n = -0.261959247 Simplifying n = -0.261959247Subproblem 2
n + 1.5625 = -1.300540753 Simplifying n + 1.5625 = -1.300540753 Reorder the terms: 1.5625 + n = -1.300540753 Solving 1.5625 + n = -1.300540753 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.5625' to each side of the equation. 1.5625 + -1.5625 + n = -1.300540753 + -1.5625 Combine like terms: 1.5625 + -1.5625 = 0.0000 0.0000 + n = -1.300540753 + -1.5625 n = -1.300540753 + -1.5625 Combine like terms: -1.300540753 + -1.5625 = -2.863040753 n = -2.863040753 Simplifying n = -2.863040753Solution
The solution to the problem is based on the solutions from the subproblems. n = {-0.261959247, -2.863040753}Solution
n = {-0.261959247, -2.863040753}
| 75=3(-6-n-5) | | 10xy+xy+36y*y=0 | | 10xy+xy=0 | | 3y/4*2=12 | | m*m+13m=0 | | 3x+23y=53+53y | | 9x+2=6x-10-x-4 | | 0=81x-29970 | | 3x/2=7x/5 | | (V+3)(7v+4)=0 | | 9/10=7x/5 | | (K+4)(4k-5)=0 | | 2(x-3)(x+4)=0 | | x^2+8x+4=-5 | | -3x^2+16=4x^2-5 | | 2x+x=992 | | f/5-3.6=-7 | | x-2=x-10 | | 12a^3/4a^2 | | 12a^2/4a^2 | | 6a-13=9a+15 | | 3x.x/2=35 | | -7/3(3x-2)=-21 | | y^2=121 | | 10z^2-10=470 | | 2x^2+48=0 | | y+1=a+b | | 5m^2-7=488 | | 2-23=y | | p(x)=x^4+16x^3-4x^2-64x | | 9b^2+10=91 | | 4/5-6=8 |