n=1/5n=54

Simple and best practice solution for n=1/5n=54 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n=1/5n=54 equation:



n=1/5n=54
We move all terms to the left:
n-(1/5n)=0
Domain of the equation: 5n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
n-(+1/5n)=0
We get rid of parentheses
n-1/5n=0
We multiply all the terms by the denominator
n*5n-1=0
Wy multiply elements
5n^2-1=0
a = 5; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·5·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*5}=\frac{0-2\sqrt{5}}{10} =-\frac{2\sqrt{5}}{10} =-\frac{\sqrt{5}}{5} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*5}=\frac{0+2\sqrt{5}}{10} =\frac{2\sqrt{5}}{10} =\frac{\sqrt{5}}{5} $

See similar equations:

| Y=x^2+46 | | (v-5)/2=-5 | | (6+l)/3=5 | | d/2+3=5 | | (c+2)/3=3 | | r2-10=17 | | x^2-300x-20000=0 | | (2x+3)^2+4=29 | | t2^+8t+16=0 | | (n-6)=360 | | t/9×5=10 | | 5j+2=23=2j | | 16+2p=58 | | (3u-7)+(9+u)=0 | | Y+2.4y+1.7=(y-3) | | y+19=99 | | 333x2=666 | | 900000000x=90000000000 | | x^2+14x-680=0 | | 4(x-80=68 | | 2y2+y=-11y | | 2y2+y=-11 | | (12x+9)(2-7x)-(12x+9)=0 | | ((x-400)/x)=0.6 | | 124+352-12*8/4+49/7-5=n | | 2(x-4)^4=108 | | 4x225=0 | | x2-5x+3=3 | | (k+7)^2=288 | | 4x^2—225=0 | | x2+5x=15 | | 4x-255=0 |

Equations solver categories