If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying n = 4 + 7n(54 + n) n = 4 + (54 * 7n + n * 7n) n = 4 + (378n + 7n2) Solving n = 4 + 378n + 7n2 Solving for variable 'n'. Reorder the terms: -4 + n + -378n + -7n2 = 4 + 378n + 7n2 + -4 + -378n + -7n2 Combine like terms: n + -378n = -377n -4 + -377n + -7n2 = 4 + 378n + 7n2 + -4 + -378n + -7n2 Reorder the terms: -4 + -377n + -7n2 = 4 + -4 + 378n + -378n + 7n2 + -7n2 Combine like terms: 4 + -4 = 0 -4 + -377n + -7n2 = 0 + 378n + -378n + 7n2 + -7n2 -4 + -377n + -7n2 = 378n + -378n + 7n2 + -7n2 Combine like terms: 378n + -378n = 0 -4 + -377n + -7n2 = 0 + 7n2 + -7n2 -4 + -377n + -7n2 = 7n2 + -7n2 Combine like terms: 7n2 + -7n2 = 0 -4 + -377n + -7n2 = 0 Factor out the Greatest Common Factor (GCF), '-1'. -1(4 + 377n + 7n2) = 0 Ignore the factor -1.Subproblem 1
Set the factor '(4 + 377n + 7n2)' equal to zero and attempt to solve: Simplifying 4 + 377n + 7n2 = 0 Solving 4 + 377n + 7n2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.5714285714 + 53.85714286n + n2 = 0 Move the constant term to the right: Add '-0.5714285714' to each side of the equation. 0.5714285714 + 53.85714286n + -0.5714285714 + n2 = 0 + -0.5714285714 Reorder the terms: 0.5714285714 + -0.5714285714 + 53.85714286n + n2 = 0 + -0.5714285714 Combine like terms: 0.5714285714 + -0.5714285714 = 0.0000000000 0.0000000000 + 53.85714286n + n2 = 0 + -0.5714285714 53.85714286n + n2 = 0 + -0.5714285714 Combine like terms: 0 + -0.5714285714 = -0.5714285714 53.85714286n + n2 = -0.5714285714 The n term is 53.85714286n. Take half its coefficient (26.92857143). Square it (725.1479593) and add it to both sides. Add '725.1479593' to each side of the equation. 53.85714286n + 725.1479593 + n2 = -0.5714285714 + 725.1479593 Reorder the terms: 725.1479593 + 53.85714286n + n2 = -0.5714285714 + 725.1479593 Combine like terms: -0.5714285714 + 725.1479593 = 724.5765307286 725.1479593 + 53.85714286n + n2 = 724.5765307286 Factor a perfect square on the left side: (n + 26.92857143)(n + 26.92857143) = 724.5765307286 Calculate the square root of the right side: 26.91795926 Break this problem into two subproblems by setting (n + 26.92857143) equal to 26.91795926 and -26.91795926.Subproblem 1
n + 26.92857143 = 26.91795926 Simplifying n + 26.92857143 = 26.91795926 Reorder the terms: 26.92857143 + n = 26.91795926 Solving 26.92857143 + n = 26.91795926 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-26.92857143' to each side of the equation. 26.92857143 + -26.92857143 + n = 26.91795926 + -26.92857143 Combine like terms: 26.92857143 + -26.92857143 = 0.00000000 0.00000000 + n = 26.91795926 + -26.92857143 n = 26.91795926 + -26.92857143 Combine like terms: 26.91795926 + -26.92857143 = -0.01061217 n = -0.01061217 Simplifying n = -0.01061217Subproblem 2
n + 26.92857143 = -26.91795926 Simplifying n + 26.92857143 = -26.91795926 Reorder the terms: 26.92857143 + n = -26.91795926 Solving 26.92857143 + n = -26.91795926 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-26.92857143' to each side of the equation. 26.92857143 + -26.92857143 + n = -26.91795926 + -26.92857143 Combine like terms: 26.92857143 + -26.92857143 = 0.00000000 0.00000000 + n = -26.91795926 + -26.92857143 n = -26.91795926 + -26.92857143 Combine like terms: -26.91795926 + -26.92857143 = -53.84653069 n = -53.84653069 Simplifying n = -53.84653069Solution
The solution to the problem is based on the solutions from the subproblems. n = {-0.01061217, -53.84653069}Solution
n = {-0.01061217, -53.84653069}
| r-5=0 | | ln(x)=ln(x-8)+ln(2) | | 2x+1+2x+1+3x+2=18 | | (4z+7)(4z-7)= | | 2(2a-b)-5(4b-6a)= | | 7b=4-b | | b-10=-15 | | 32-2x=14-8x | | n=322(4+n) | | x+11=10x-2(4x+22) | | -3=-2.5r | | x/3-x+6/11=3 | | 2(x-4)+3(x+1)=45 | | 7ln(x-7)+6=7 | | (2x+1)=169 | | 2x+90+8x=180 | | 3+11x=-57+x | | 3(m+n)+4(2m-3)+2(5-n)= | | 3z+5=z-7 | | 3(6x-7)=7x+45+8x | | 25+6x=1/2(20x-30) | | j+1-2j-1+3j+1= | | 5+p=3 | | 4x-12=8x-128 | | 12+3(x+2y-4)-7(-2x-y)= | | 6+[5y+2]=9 | | -3(b-1)=18 | | 2p+t=s | | y(2y-1)(y+5)=0 | | 7(2x-60)=6x-12-4x | | f+11=8 | | 3(x-2)=1 |