If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n=5+(n-1)(1/6)
We move all terms to the left:
n-(5+(n-1)(1/6))=0
We add all the numbers together, and all the variables
n-(5+(n-1)(+1/6))=0
We multiply parentheses ..
-(5+(+n^2-1*1/6))+n=0
We multiply all the terms by the denominator
-(5+(+n^2-1*1+n*6))=0
We calculate terms in parentheses: -(5+(+n^2-1*1+n*6)), so:We get rid of parentheses
5+(+n^2-1*1+n*6)
determiningTheFunctionDomain (+n^2-1*1+n*6)+5
We get rid of parentheses
n^2+n*6+5-1*1
We add all the numbers together, and all the variables
n^2+n*6+4
Wy multiply elements
n^2+6n+4
Back to the equation:
-(n^2+6n+4)
-n^2-6n-4=0
We add all the numbers together, and all the variables
-1n^2-6n-4=0
a = -1; b = -6; c = -4;
Δ = b2-4ac
Δ = -62-4·(-1)·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*-1}=\frac{6-2\sqrt{5}}{-2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*-1}=\frac{6+2\sqrt{5}}{-2} $
| 5+x/4=24 | | 4x+6+3=10 | | y/2−2=16 | | -6x+(x+2)=36 | | (x=3)(x-7)=0 | | y2−2=16 | | -17=-10=x | | x(3-x)(x-5)=0 | | 4x2-7x+3=0 | | (7x+20)=111 | | -15=x=6 | | 19t=29+6t | | 4y+3=(-19) | | 8n^2-4=0 | | -19=-x+3 | | 5y2+2y−8=0 | | 7-13k=-14k | | x^2=8x-13 | | 3x-5=2x-1÷3 | | 5^x+7=23 | | 3•x=-45 | | 8×a+3=-19 | | -2y^2=25+15y | | 5-x=4x^2 | | 7−7k−6k=−7k−7k | | Y=-16x^2+48x+6 | | 4^(3x)-2^(3x-2)=-1/64 | | X=50-1/2x | | 64=5u-11 | | 7x=20-3x^2 | | 4.3x+7=4.5x-9 | | 4+5x-x=12 |