If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p(p+9)=0
We multiply parentheses
p^2+9p=0
a = 1; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*1}=\frac{-18}{2} =-9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*1}=\frac{0}{2} =0 $
| 5x/30=4/5 | | 10-6k+10=9k-10 | | 3x^2+4x^2=-3x-4x^2 | | 5/6x=5/6x+4 | | 2(5x-11)+9=19 | | 5x+11+5x+11+2x+22+2x+22=180 | | 10-6k+10=-9k-10 | | (m+1)(m+4)=0 | | 102=6a+8+6a+8+10a-4+12a | | -6(1+5b)=-126 | | 5/6x-2=5/6x+2 | | 1/4x-1/10=-3/10 | | 5(w-1)=5w+3-6(-2w-1) | | 350=-5(6x-16) | | 3(6n+2)+2n=-94 | | 35x-30x=75 | | (v-4)(5v+7)=0 | | 3x+x^2-507=0 | | 4*p-3=2p+8 | | 19.35-5.4d=-10d-19.85-17.38 | | j(4j-5)=0 | | 4x+56+-3x+42=28 | | 9x-27=2x | | 19.35-5.4d=10d-19.85-17.38 | | x+56+-3x+42=28 | | 2.7+10m=6.52 | | 3x+17+1.5x-5=180 | | 5r+5(r-8)=-100 | | 3x+7+1.5x-5=180 | | 19.35-5.4d=-10-19.85-17.38 | | j(4j−5)=0 | | 4s2+12s+9=0 |