p(p-.105)=5907

Simple and best practice solution for p(p-.105)=5907 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p(p-.105)=5907 equation:


Simplifying
p(p + -0.105) = 5907

Reorder the terms:
p(-0.105 + p) = 5907
(-0.105 * p + p * p) = 5907
(-0.105p + p2) = 5907

Solving
-0.105p + p2 = 5907

Solving for variable 'p'.

Reorder the terms:
-5907 + -0.105p + p2 = 5907 + -5907

Combine like terms: 5907 + -5907 = 0
-5907 + -0.105p + p2 = 0

Begin completing the square.

Move the constant term to the right:

Add '5907' to each side of the equation.
-5907 + -0.105p + 5907 + p2 = 0 + 5907

Reorder the terms:
-5907 + 5907 + -0.105p + p2 = 0 + 5907

Combine like terms: -5907 + 5907 = 0
0 + -0.105p + p2 = 0 + 5907
-0.105p + p2 = 0 + 5907

Combine like terms: 0 + 5907 = 5907
-0.105p + p2 = 5907

The p term is -0.105p.  Take half its coefficient (-0.0525).
Square it (0.00275625) and add it to both sides.

Add '0.00275625' to each side of the equation.
-0.105p + 0.00275625 + p2 = 5907 + 0.00275625

Reorder the terms:
0.00275625 + -0.105p + p2 = 5907 + 0.00275625

Combine like terms: 5907 + 0.00275625 = 5907.00275625
0.00275625 + -0.105p + p2 = 5907.00275625

Factor a perfect square on the left side:
(p + -0.0525)(p + -0.0525) = 5907.00275625

Calculate the square root of the right side: 76.857028021

Break this problem into two subproblems by setting 
(p + -0.0525) equal to 76.857028021 and -76.857028021.

Subproblem 1

p + -0.0525 = 76.857028021 Simplifying p + -0.0525 = 76.857028021 Reorder the terms: -0.0525 + p = 76.857028021 Solving -0.0525 + p = 76.857028021 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '0.0525' to each side of the equation. -0.0525 + 0.0525 + p = 76.857028021 + 0.0525 Combine like terms: -0.0525 + 0.0525 = 0.0000 0.0000 + p = 76.857028021 + 0.0525 p = 76.857028021 + 0.0525 Combine like terms: 76.857028021 + 0.0525 = 76.909528021 p = 76.909528021 Simplifying p = 76.909528021

Subproblem 2

p + -0.0525 = -76.857028021 Simplifying p + -0.0525 = -76.857028021 Reorder the terms: -0.0525 + p = -76.857028021 Solving -0.0525 + p = -76.857028021 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '0.0525' to each side of the equation. -0.0525 + 0.0525 + p = -76.857028021 + 0.0525 Combine like terms: -0.0525 + 0.0525 = 0.0000 0.0000 + p = -76.857028021 + 0.0525 p = -76.857028021 + 0.0525 Combine like terms: -76.857028021 + 0.0525 = -76.804528021 p = -76.804528021 Simplifying p = -76.804528021

Solution

The solution to the problem is based on the solutions from the subproblems. p = {76.909528021, -76.804528021}

See similar equations:

| ×/9-15=15 | | 7y-3=6y+3 | | 4(x+6)-8x=-8 | | -4(n-2)=32 | | m^3+10m+9=0 | | 19/4x≤17 | | p(p+.105)=5907 | | 2a-11=8a+18 | | -8/-6 | | 221/2X101/4 | | p(.105)=5907 | | x^2+11x+76=0 | | 2x+5(x-2)=6 | | g(x)=2x^2+3 | | 16d+(4+-5d)=-67 | | x^2-3x+63=0 | | 3x+(-8)=1 | | 5ln(y)-5ln(y+0.2)= | | 5ln(y)-5ln(y+0.2)=ln(x) | | W(l-4)=96 | | x^4-x+14.7=0 | | G(-x)=2x^2+7x-7 | | 7(4)-2(4)= | | 2a/3a÷3a/2b | | -6=2/7m | | 25-3x^2/4 | | 180=(2x-25)+(5x+30) | | a/14 | | 12=-4/5y | | (x-3-5i)(x-3-5i)=0 | | 5x-7=8x-11 | | X=.60x+.40x |

Equations solver categories