If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p+1/3p=24
We move all terms to the left:
p+1/3p-(24)=0
Domain of the equation: 3p!=0We multiply all the terms by the denominator
p!=0/3
p!=0
p∈R
p*3p-24*3p+1=0
Wy multiply elements
3p^2-72p+1=0
a = 3; b = -72; c = +1;
Δ = b2-4ac
Δ = -722-4·3·1
Δ = 5172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5172}=\sqrt{4*1293}=\sqrt{4}*\sqrt{1293}=2\sqrt{1293}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-2\sqrt{1293}}{2*3}=\frac{72-2\sqrt{1293}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+2\sqrt{1293}}{2*3}=\frac{72+2\sqrt{1293}}{6} $
| 17+5y=-13 | | 7x+13=6x+30 | | 12y-16=4y-14 | | (6+y)(3y-7)=0 | | 5x+6=7x-5 | | 2n+12=50 | | (1/2)x^2+x−14=0 | | -60x^2+1500x-4000=0 | | -42=-w/3 | | 7n+3=100 | | b−1=1+b | | 123=3x+31.5 | | x-15=2x-10 | | 5+1/3x=1/2+1/6x | | 3n+12=50 | | 200t=800 | | 4x+33=133 | | 9+5n=-14 | | 60w=360 | | 60x^2+1500x-4000=0 | | 7+3-2=x-2 | | 3x(x-4)=4x-18 | | 7y-4=35-4 | | f+30/8=8 | | 4n+14=6 | | 50q=100 | | 2x-x+4-2=x+6-x-2 | | 11x+73=180 | | −2(a+5)−10=−2(a+10) | | 12x=72+3x | | 9w=7w+8 | | 9999-7870=x |