p+10=8/p-7+9

Simple and best practice solution for p+10=8/p-7+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p+10=8/p-7+9 equation:



p+10=8/p-7+9
We move all terms to the left:
p+10-(8/p-7+9)=0
Domain of the equation: p-7+9)!=0
We move all terms containing p to the left, all other terms to the right
p+9)!=7
p∈R
We add all the numbers together, and all the variables
p-(8/p+2)+10=0
We get rid of parentheses
p-8/p-2+10=0
We multiply all the terms by the denominator
p*p-2*p+10*p-8=0
We add all the numbers together, and all the variables
8p+p*p-8=0
Wy multiply elements
p^2+8p-8=0
a = 1; b = 8; c = -8;
Δ = b2-4ac
Δ = 82-4·1·(-8)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{6}}{2*1}=\frac{-8-4\sqrt{6}}{2} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{6}}{2*1}=\frac{-8+4\sqrt{6}}{2} $

See similar equations:

| 3x(-6)+6=5x-6 | | 6x-8=6x+1 | | 3=-5b+4b | | 1/x+3-1/x/1/x+3-1=0 | | x/12+10=8 | | 2=-5/8+v | | 3.5=5x-9.3 | | -4x-5=2x+9 | | 30=6n+6 | | 2025c-0.55=3.23 | | 7x/x−1+1/3=5/6+7/x−1 | | 0.27x+0.3(x-5)=0.01(7x-3) | | 7xx−1+13=56+7x−1 | | 8k+6k=-14 | | 11=7+v/10.24 | | -8p-4(6-4p)=6(p-5)-14 | | 6x=3( | | -3-5x-3x+11x+3=x | | 5(2x+3)=2(3x-8) | | 4/9=y+4 | | (x+2)(5x-1)=-51x-182 | | -7v+16.6=5.4 | | 4.w=7 | | 18=5(x+3) | | -10.25=21+x/5 | | -(2+8n)=-4n+18 | | 0.23x+0.3(x-5)=0.01(3x-3) | | -2x+4x-6=2(x-2)-4 | | (x+5)-(10+5)=25 | | v/13+11=13 | | -3|2n-1|=-57 | | 5=3w+2w |

Equations solver categories