p-16=-4/9p+1

Simple and best practice solution for p-16=-4/9p+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p-16=-4/9p+1 equation:



p-16=-4/9p+1
We move all terms to the left:
p-16-(-4/9p+1)=0
Domain of the equation: 9p+1)!=0
p∈R
We get rid of parentheses
p+4/9p-1-16=0
We multiply all the terms by the denominator
p*9p-1*9p-16*9p+4=0
Wy multiply elements
9p^2-9p-144p+4=0
We add all the numbers together, and all the variables
9p^2-153p+4=0
a = 9; b = -153; c = +4;
Δ = b2-4ac
Δ = -1532-4·9·4
Δ = 23265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23265}=\sqrt{9*2585}=\sqrt{9}*\sqrt{2585}=3\sqrt{2585}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-153)-3\sqrt{2585}}{2*9}=\frac{153-3\sqrt{2585}}{18} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-153)+3\sqrt{2585}}{2*9}=\frac{153+3\sqrt{2585}}{18} $

See similar equations:

| 7x+5/16=6 | | 3x/5+2000=x | | 9h+11=13-h | | (2x+3)(-x+3)=0 | | 6k-5=7k+6 | | 6k-5=7k+ | | 4m/5-2m/3=6 | | 2y-3+4=1234567890y+1029384756y-11111111111111999999999999999999999999999999999999999999999999999999999999999999+1-1+199999999999999999999999-19999999999999999999999+2999999999999999999999 | | 15/3x=30 | | y/2+y/3=10 | | 035*x=6000 | | (3x+2)=(8-2) | | 4{3d-2}+5=45 | | 12p+4=40 | | {2a+7=} | | t/9-5=-7 | | (x+3)(x+4)-20=0 | | (x+3)(x+40-20=0 | | 4s+7=27 | | 0=20+16t^2 | | 8(m+2)=5(m+5 | | n=11.7/8 | | 2x-3(x-1)=4 | | 5x-1=-2(x-10) | | x+13x=-12 | | x+13x+12=0 | | 40y=25y+16=0 | | x(1+13)+12=0 | | -7y+3=-3(y+7) | | x^2−8x−2=0 | | 2x/3x-9/2=-3 | | Y=15x-130 |

Equations solver categories