If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p2+20p=0
We add all the numbers together, and all the variables
p^2+20p=0
a = 1; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·1·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*1}=\frac{-40}{2} =-20 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*1}=\frac{0}{2} =0 $
| 2=p+13 | | 3(x+2)+4=5(x-1)+7 | | -7(2-r)=14 | | 7x+8=79 | | 6x+2=-118 | | 929=k+166 | | 18+2x=12-2x | | m/11=27 | | 31u=992 | | 18+2x=12+2x | | 18=r-568 | | 12=n-13 | | k-2=-18 | | 996=r+692 | | 3(x-2)-3=-3(-6x+9)-7x | | g+62=373 | | v-6=-25 | | 8g=880 | | 3k=309 | | 3k=209 | | g-67=397 | | 4.94-0.08x=3.42 | | g−67=397 | | 4.9t^2+40t/600=0 | | 8p=680 | | 6x+42=-8(x-7) | | p2-12=-4p | | p/19=28 | | h+219=952 | | 594=27j | | 25+12x=-11 | | v/19=22 |