If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p2-16p-56=0
We add all the numbers together, and all the variables
p^2-16p-56=0
a = 1; b = -16; c = -56;
Δ = b2-4ac
Δ = -162-4·1·(-56)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{30}}{2*1}=\frac{16-4\sqrt{30}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{30}}{2*1}=\frac{16+4\sqrt{30}}{2} $
| 4x + 3 = 7 | | 12x+42=8.5x-40 | | x^2+15x=5x−24 | | L=15-1.5t | | -10 + 3x = 8 | | .5(6x-18)+7=7x+2-4x | | 5/6b=7/8b-2¼ | | 16k²-49=0 | | 4.905x^2-2.74-12=0 | | 200+15x=25x | | 1/6y+1/6y=10 | | 200+20x=50x | | 10x-2=2(2x+5) | | -3x – 5 = 10 | | 5.6g+8=3.6g+12 | | 3x-4=2x+9* | | x^2-6x+4=-7x+6x2−6x+4=−7x+6 | | (x+4)+(x+17)=90 | | 39x+45=55x+40 | | -413.4=-15,9n | | (x+4)+(x+17)=180 | | 40x+108=180 | | -3x+3=3x-15 | | -5x-9-x+14-16+3x=10 | | 6p+8p=6p+16 | | 9/11x=3/6 | | -240=20a | | 2/6x=5/7 | | 9(x)=2/3x-1 | | 2x+20+3x-15=180 | | 3(2x+10)=7(x+1)+21 | | 58=14-12p |