If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p2=81
We move all terms to the left:
p2-(81)=0
We add all the numbers together, and all the variables
p^2-81=0
a = 1; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·1·(-81)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*1}=\frac{-18}{2} =-9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*1}=\frac{18}{2} =9 $
| 5x-22=x^2-11x+30 | | 3x-1=x+13,5 | | 9y×11=121 | | (9+y)×11=121 | | 4a+3=a-24 | | -3x-7=-2x-2 | | .8(4x+9)=4.3-(x-3) | | -8(4x+9)=4.3-(x-3) | | (x+2)^2-x^2=52 | | 6000/x+100=6000/(x-3) | | 6000/x=6000/(x-3)-100 | | 0.5x+12=15 | | 4-3x=1-1x | | 8x–5=4x-3 | | 12x-7=-43 | | x^2+(4(x)^-1)^2=10 | | 4x-5/3=4x+5/5 | | (4y^-1)^2+y^2=10 | | (4+z)(3z+8)=0 | | 3(x-5)-15=x | | (4y-3)(6+y)=0 | | (4/y)^2+y^2=10 | | 10-2(x-1)=5 | | 2(x+2)-5=15 | | 7x-11=(2x-1) | | 3(x+5)=-3x+3 | | 4b+8=30 | | 12+2(x-6)=3x-11 | | 5^y+7=12 | | 3x+4x=-9+-15 | | 2x+3=2.5x+1.5 | | 4x-5=3(x-4) |