p=(2p-6)(p+1)

Simple and best practice solution for p=(2p-6)(p+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p=(2p-6)(p+1) equation:



p=(2p-6)(p+1)
We move all terms to the left:
p-((2p-6)(p+1))=0
We multiply parentheses ..
-((+2p^2+2p-6p-6))+p=0
We calculate terms in parentheses: -((+2p^2+2p-6p-6)), so:
(+2p^2+2p-6p-6)
We get rid of parentheses
2p^2+2p-6p-6
We add all the numbers together, and all the variables
2p^2-4p-6
Back to the equation:
-(2p^2-4p-6)
We add all the numbers together, and all the variables
p-(2p^2-4p-6)=0
We get rid of parentheses
-2p^2+p+4p+6=0
We add all the numbers together, and all the variables
-2p^2+5p+6=0
a = -2; b = 5; c = +6;
Δ = b2-4ac
Δ = 52-4·(-2)·6
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{73}}{2*-2}=\frac{-5-\sqrt{73}}{-4} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{73}}{2*-2}=\frac{-5+\sqrt{73}}{-4} $

See similar equations:

| 5(5+4)=n | | X2-12x=27 | | (5x+18)=52 | | 9x-4=94 | | 6x+2=8+5x | | 260=p*5253/808 | | 5x+29=9x=15 | | 3x+1/2=6x-3/4 | | 6.8=2.9+m | | 5(x-2)=30 | | x+(75+x)=180 | | 6x+4x-12+10=0 | | 8(4n+5)=3(n-6) | | -4(w+3)-w-2=-5(w+4)+6 | | d|5.20=2.4 | | 3(2z+7)=2(2z+1)+z | | 20=16t2+24t+5 | | x/x-1-1/x+1=2/x^2-1 | | 180=(8+x)+(3x) | | 4x+12.5=7x+8 | | 2(x+4)=2x+1+x+x= | | 5x=7=8x-17 | | (a-10)×(a÷10)=200 | | 130+75+(x-5)=180 | | 10^x+4=100,000 | | 5,248=41p+40 | | 2(3x-1)-(2x+1)=-5 | | 7/x+3-5/x-3=8/x^2-9 | | 130+75+(x-5)=90 | | 7x+20=×-10 | | x+.0775x=15 | | 8/11×n-10=64 |

Equations solver categories