If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q(q-8)=0
We multiply parentheses
q^2-8q=0
a = 1; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·1·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*1}=\frac{0}{2} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*1}=\frac{16}{2} =8 $
| (x+1)(2x+1)=(x+3)(2x+3)−14 | | (45.94*3)-219.14=m/3 | | 2(w+2w-5)=80 | | 2(-4h13)=37+13h | | (g+8)(g-8)=0 | | 4x+4=-3x+52 | | 2(w+(2w-5)=80 | | 2-5(x+4)=-2(x+3) | | 6o+-12=2o+36 | | 2x+3x-(2x-1)=150 | | 3x+6=-6x5 | | M=21t | | 16^3x=8^x+6 | | 6x-9=3×(2x+3) | | 24=0.33333t | | M(x)=4x+16 | | 10=−4a | | 1-6p=1-8p | | 3(x·1)=2x+9 | | 2(w+5-2w)=80 | | 2x2+21x-23=0 | | 3x÷3=(15+3)×3 | | 0=1/15x+18.5 | | x+(2x÷0.15)÷(x÷0.05)=1.8 | | -0.8(r+3)+2.2rr=2 | | x(4x-3)+2x= | | 3x+5-4x=5x+27 | | -8b=-112 | | 0.35*x=0.26*x+600000 | | x+(2x/0.15)/(x/0.05)=1.8 | | 0.35*x=0.20*x+600000 | | -3-2(h-5)=50 |