If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+-4=-1
We move all terms to the left:
q2+-4-(-1)=0
We add all the numbers together, and all the variables
q^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| 3x+16-6x=88 | | 35=-5x+2(x+4) | | (4+8t)^2=0 | | 2x-2x+3x=15 | | 11w=42=4w | | 3x/45=x/15 | | 0.5(-4+6x)=0.3x+0.7(x+9) | | 3x+2-5x=8+2x | | 3+-k=9 | | -3(1+6)=14-y | | 59049=(3)(3)^n-1 | | 47=3x^2 | | 10(2x+6)=8(2x+12) | | 2x-16=2(1+4x) | | 10(2x+6)=8(4x+12) | | 10(2x+6)=8(2x+6) | | F(54)=2x+10 | | 10(2x+6)=8(4x+6) | | 14j-14j+j-j+2j=18 | | 3x(10+9x−x^2)=0 | | 2x-2+3x-7+x+3=23 | | 5(x-1)=28-6x | | 6x-4=2(4x-4) | | 0.7x0.6=0.2x-0.42 | | 9p+4p+5p-14p=4 | | 30x+27x^2−3x^3=0 | | 6x3=3x6= | | 10(2x+6)=8(x+10) | | 10(2x+6)=8(x+8) | | 2(6x-1)+(2x+5)=90 | | -8=7x+3x-8 | | 10(2x+6)=8(x+5) |