q2+22q=0

Simple and best practice solution for q2+22q=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q2+22q=0 equation:



q2+22q=0
We add all the numbers together, and all the variables
q^2+22q=0
a = 1; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·1·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*1}=\frac{-44}{2} =-22 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 2x(2x)=x+75 | | 194.99+2p=284.97 | | 0.3=g/3 | | 4a-10=14-2a | | (21x-3)=(5x+11) | | 3(x-2)-(6x+4)=6(2x+5) | | a/2−1.5=0.75 | | –16x+3=–13x–6 | | 9x+3-5x=7x+4 | | 4(2x-5)+5=-20 | | -25=3/5x-4 | | 3(x-7)+6=21 | | 14a+5–4a=13a+8 | | 1/x=1/4000+1/6000+1/12000 | | 2(x+4=8x-22 | | w/−4+8=3 | | 8x-8=-50+2x | | 1/x=0.0005 | | 4x+9•x=520 | | 4^2x*1/16=4^(6x+18) | | 10^-3x(10^x)=1/10 | | (4x+9)•x=520 | | 7y=18+5 | | 2.5x-7=1÷ | | x-(-6)=23 | | 3y-6.5=3 | | 16=1/4x+8 | | 3(4r+19)=6r+9 | | 0.4p=-9* | | (6x−1)=(5x+12) | | x/5-3/4=2/10 | | a-3/2=3a/4+a-24/6 |

Equations solver categories