If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+26q=0
We add all the numbers together, and all the variables
q^2+26q=0
a = 1; b = 26; c = 0;
Δ = b2-4ac
Δ = 262-4·1·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-26}{2*1}=\frac{-52}{2} =-26 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+26}{2*1}=\frac{0}{2} =0 $
| 14x+17x-6+2=6x+2-6 | | 14y-20=4y | | -63+12x=4x+145 | | 2+2=x(7-4) | | 8=2^3x+1 | | 14x-6+60=180 | | 2+2x(7-4=) | | 63-4x=3x | | 3a+45=180 | | -1/3x+1/2=5/3x-3/2 | | -9-10=-7x+24 | | 1/2x+4=7 | | 11x-111=2x+159 | | -4x-72=18-7x | | 2w^2-1w=-12 | | 52(2^3x+1)=180 | | 80=180-5t-5t^2 | | 2x-53=16+5x | | (Y-6)²+10=3y | | X(5+2x)=250 | | -5v/6=30 | | 14x^2+35=28x | | 2(4-2y)+y=-1 | | x/5+5x=20 | | 14n-11=4n+289 | | -2y+7=4-7y | | -8+n=16 | | 3/4x^2=24 | | 2m+6=3(-m+2) | | X/8=x+1/9 | | 12.5=y+4 | | 95=4w |