If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+33q=0
We add all the numbers together, and all the variables
q^2+33q=0
a = 1; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·1·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*1}=\frac{-66}{2} =-33 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*1}=\frac{0}{2} =0 $
| 9+4=5x | | q2+16q=0 | | 1.3+x=2.6 | | d2+24d=0 | | X^2-34x-946=0 | | 21/2•c=10 | | (5x+2)/3=9 | | 6.4.x-4=5.4x | | 4x/x-8-2x/x-8=x/8 | | (8x+6)=(3x+5) | | 2x-16=x+40=x | | 4x+(2x-12)=30 | | 2u+32=10u-8 | | 7+3(x-4)-10=-55 | | 4/9x=5/27 | | 5x=43+2 | | 5x=45+2 | | 5y+34=-2-y+1 | | 5x=45+6 | | (2x+13)+47=90 | | 9^x=34 | | 1/3(2y-3)-2y=24 | | 4x+16=200 | | 6^3x=(1/36)^x+5 | | 8(10+x)=144 | | (7x-8)=0 | | -7x+1=56 | | 16^x=(1/4)^x+3 | | 25=9x+x^2 | | -13v=20 | | -y^2+9y+45=0 | | 7(x+7)=84x= |