If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+4q+4=0
We add all the numbers together, and all the variables
q^2+4q+4=0
a = 1; b = 4; c = +4;
Δ = b2-4ac
Δ = 42-4·1·4
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-4}{2}=-2$
| 5r2–6r–9=0 | | 6(3-x)=2x+15 | | -4x+2(3x-2)=46 | | -26x=-12 | | 10x-16+x-19+4x+20=180+5x | | y2+11y+28=0 | | 10x-16+x-19+4x+20=180=5x | | (2x)(2x)+8x-1=0 | | -5(3x-15)=2(x-46)-3 | | 1/4x+5/2x=4-1/4x | | a^2+100=196 | | 3.2+5.7=-2.5x | | 2m=-42 | | 5z2–8z+6=0 | | -3x=-32 | | 5.25+6=74.25x= | | y2–6y–2=0 | | 1/2(x-12)=21+5x | | 5+2x=4(-x+5)-27 | | −4=c-9 | | 3x-5+7x+9+x=180 | | 90+5x+4+2x+30=180 | | 5p-8=-33 | | 62.125x=186.38 | | x+8+6x+4+5x=180 | | -3(2x-5)-6=10-2x-13 | | 90+3x+38+4x+10=180 | | x2-12x=45 | | 5x-6+2x+2+x=180 | | 3x−4/x+3= | | 6=6+3y | | -5x-18=10x-1 |