If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+50=450
We move all terms to the left:
q2+50-(450)=0
We add all the numbers together, and all the variables
q^2-400=0
a = 1; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·1·(-400)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*1}=\frac{-40}{2} =-20 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*1}=\frac{40}{2} =20 $
| 3p2-400=275 | | c2+10=110 | | 10x+4=34(x=3) | | m-28/5-6m-37/7=1 | | y2-100=96 | | 3x+2x=4x+4x | | 4q1+5=65 | | r2+10=131 | | x2−10x+25=200 | | 5x-3(x-10)=30 | | 7(x+5)+2=7x+2 | | 15x-4(3x-1)=22 | | 20-4(x+1½)+3(12-2x)=0 | | `2p+12=14` | | -3h=-81 | | X²+(y-5)²=36 | | 4a-2a=52 | | f-22=8 | | 3x-4/18+x=3x+4/3+1 | | n-40=-15 | | q+12=24 | | 4a2+3a+36=8a2+3a | | (2y)/(y+2)=6-4/(y+2) | | -6h+10=-4h | | (3x+8)-(2x=12) | | 240=8(-8x+6) | | 4a+3a+36=8a+3a | | 2(|x|-1)=√2 | | 4a²+3a+36=8a²+3a | | 4(7x-3)+4=-176 | | 2((x)-1)=√2 | | -84=8(m-6)+4m |