q2+8=10

Simple and best practice solution for q2+8=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q2+8=10 equation:



q2+8=10
We move all terms to the left:
q2+8-(10)=0
We add all the numbers together, and all the variables
q^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $

See similar equations:

| 3x+x+3x+x=60 | | 2(3z-4)=7z+2 | | 40+10+5x+90=180 | | x+3=8x | | 2s+19=95 | | 11x-3=24x | | 40x-10+5x+90=180 | | 2j-5=5 | | (X-1)(x+5)=x^2+4x^2-2 | | -3y+9=-9 | | -5y-5(-2-2y)=5(y+2) | | 17x-124=180 | | 5(2x-9)=360 | | b=42.5b | | 20=4s+6 | | 14=2f+6 | | 10=4+3j | | I’2(3y+2)=1/2(12y+8) | | 10x-5=25x | | 180+20x=5x | | 12.8+12.6+11.8+9.7+x/5=12.3 | | 7x+5+2x=0 | | 3x-14+2x-2=14 | | x+9=12+4x | | m/22=11 | | 18-w=8w | | 30+5x=11x | | 5-3a=13 | | 1/4(8w+3)=31/4 | | 2(x-4)+x=3+3x-1 | | 4x-5+x=70 | | 5v+3=4v-7 |

Equations solver categories