If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2-11q+24=0
We add all the numbers together, and all the variables
q^2-11q+24=0
a = 1; b = -11; c = +24;
Δ = b2-4ac
Δ = -112-4·1·24
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-5}{2*1}=\frac{6}{2} =3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+5}{2*1}=\frac{16}{2} =8 $
| q2-11q+23=0 | | 3y-3=2y+y-3 | | 5(4x+1=105 | | 3n-14=31 | | 6z-21=3 | | 38=3x+6+5x | | x/7+5=19 | | 3y-6-4y=2(y-9) | | 4b-12=7b-30 | | x/2-3=3 | | x7+5=19 | | 5*2p+5*4=10 | | x+5+6=46 | | 2x-2=9+x | | 2(x+3)+2=4 | | 7=m+5+10 | | 3/x=0.068 | | 5x+0.5=5.5 | | 6p-5+5p=-16 | | -10+5k=30 | | 139=-7d+6 | | 2(3x+1)=-2(4x-4)-3x | | X-3+x+6=10 | | 139=−7d+6 | | (9r/4)+5=8 | | (b/8)+23=-9 | | 1,7-q=-2.5 | | 1.99+6=2.50x | | (p+18)/2=18.5 | | 89(54x−36)+2=−34(−40+16x)+90 | | -y+2.4=10.6 | | 2x+0=3x+6 |