q2=13

Simple and best practice solution for q2=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q2=13 equation:



q2=13
We move all terms to the left:
q2-(13)=0
We add all the numbers together, and all the variables
q^2-13=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $

See similar equations:

| 26x-7=15.50 | | y/3+(2y)/5=11 | | d2=–72 | | (x/3600)*365=60 | | (x-22)+(2x-19)=(1/2x+11) | | u2=–27 | | 4(2x-3)+12=32 | | (x+3)=(6x-9) | | (x-3x)=(6x-9) | | (6x-9)=(3x+x) | | x-x(.20)=20 | | (6x-9)=3x+x) | | x^-7=125 | | (6x-9)=(x+3x) | | (6x-9)=(x-3x) | | 2^3x-4=-2 | | 3^(2x-1)-12.3^(x+1)+81=0 | | (6x-9)=x+3x | | (96,n)=12 | | 22-2b=b=5 | | 9/11×a=3/4 | | 3x-5+4x+10=360 | | b)−2(4− | | -12c=95 | | –13n−–9n−–14n+–15n−5n=–10 | | x⁵=3-2x | | y2-2y-9=0 | | 15c−7c−7c+3c=12 | | 13s-2s-5s-4s+12s=14 | | 4+2(2-x)=2-2(5-x) | | 34x+5=2 | | (3x+55)=(6x+10) |

Equations solver categories