q2=2q+4

Simple and best practice solution for q2=2q+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q2=2q+4 equation:



q2=2q+4
We move all terms to the left:
q2-(2q+4)=0
We add all the numbers together, and all the variables
q^2-(2q+4)=0
We get rid of parentheses
q^2-2q-4=0
a = 1; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·1·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*1}=\frac{2-2\sqrt{5}}{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*1}=\frac{2+2\sqrt{5}}{2} $

See similar equations:

| 4–5x+2x=–15 | | 3x+50=15,002 | | (3x+50)+x+(2x+40)=15,002 | | -8x-3x=24-6 | | -506.209=859.576+t | | -555.966=-774.248+t | | -2j+-8=-12 | | 11x+7=8x+13 | | 36=18y-9y | | 6s+-14=76 | | -24+7j=-94 | | 7(c+4)=98 | | 96=8(k+1) | | -7=s/2+-6 | | 13(x+8)=6(x+3)+30 | | 20.25=4x+5 | | 7x-3x=5x | | 3(x+6)=-x+22 | | -8z-3z=24-6 | | |5x-4|=2x-3 | | 4/3+2/3x=29/12+7/4x+3/4 | | 3(3x+5)=6(x+2) | | 4(2x+1)=5(x-1) | | 6/5+1/2t=9 | | 4/5+4/5x=10 | | 7.4x-12.9x=-9 | | 60=2(6-3t) | | 4/7=4/7x | | 61-(4x+11)=4(x+8)+x | | z*z*z-1=-2 | | (x-1)x+(x.2)3=126 | | -48.3m=-724.5 |

Equations solver categories