If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2=3
We move all terms to the left:
q2-(3)=0
We add all the numbers together, and all the variables
q^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| 20=4y(y-13) | | x=(x+40)180 | | -6x+7(1-x)=-4(-x4) | | -5(4r-6)=5(6-r) | | 7x-1=70/7 | | 20−6+4k=2−2kk= | | 3.6(6.7r-7.4)=63.5 | | 2/2x^2+5x+2=A/(x-1)+B/(x+2) | | v÷2=3 | | -1+3(x+2)=5(1+8x | | 7x×-1=2×+5 | | x÷3=2 | | 2/2x^2+5x+2=A/(2x-1)+B/(x+2) | | w^2+6w-75=0 | | 9u–20=-20 | | 1;4x+3=2 | | x÷2=1 | | -7v+1/3=5 | | -6+3p=8p+2(1-3p | | 3.3(10.8r)=18.6 | | 20+4x=30+10x | | p/7=16/22 | | p/11=16/22 | | X2+5x+4x+20-30=0 | | -12m+-20=-2m-4 | | (30-x)/8=25 | | y=2+5=12 | | u/5+3=7 | | 7(x+3)=11x-3 | | -11/6x-7/2x=202/3 | | 1250+27.50w=1400+20w | | 0.9×x-20=830 |