If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r2+4r+1=0
We add all the numbers together, and all the variables
r^2+4r+1=0
a = 1; b = 4; c = +1;
Δ = b2-4ac
Δ = 42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{3}}{2*1}=\frac{-4-2\sqrt{3}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{3}}{2*1}=\frac{-4+2\sqrt{3}}{2} $
| 6(x-6)=5(x+6) | | 2M-3=5k | | 9y=6+33 | | (15÷x+3)7-9x=0 | | x=300000+x/5 | | (2x-5)2=3+x)5 | | 3(x-7)+2(x+1)=12 | | 12/16=x/31 | | 3p+2=2p+10 | | -7(3a-10)=91 | | 8x-2(x-4)=6x-2 | | 18=13x-4x | | 18=13x | | -1/3w-3/4=-7/5 | | 5h-1.2=64 | | x(4)+17=64 | | -3/2=1/4y-7/8 | | 1/3x+17=44 | | 120+y=560-120 | | 5p+-5p=-7(p-3) | | 330*x/18=18 | | 10^3x+4=10^(5x^2)-2 | | (10^3x+4)=(10^(5x^2)-2 | | 16t^2-96t+16=0 | | 3+x-2=23 | | (x+5)/(x-6)=3/4 | | 2(+3)=6x | | -4/5=y+2 | | (2x-6)+12=3 | | y-1y/2=7 | | y-1/2y=7 | | 3/5t-1/10t=t—15/2 |