If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r2-16r+63=0
We add all the numbers together, and all the variables
r^2-16r+63=0
a = 1; b = -16; c = +63;
Δ = b2-4ac
Δ = -162-4·1·63
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2}{2*1}=\frac{14}{2} =7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2}{2*1}=\frac{18}{2} =9 $
| s(s+6)=48 | | s2+10s+21=0 | | 4q2-12q+9=0 | | y/20=70 | | 25p2+70p+49=0 | | m2-16m+64=0 | | k2+12k+36=0 | | -4h2-16h=0 | | 3f-81f2=0 | | 3d2-4d=0 | | 5c2+25c=0 | | a2+9a=0 | | 12(n-3)=4(n+1 | | 3x+2+0=3x+2+1 | | (5s+3)(2-s)=0 | | -12v-7+9v=26 | | (p+1)(p+2)=0 | | w-4/3+5=6 | | n^2-5n-300=0 | | 4(t-8)=3+6+2 | | 4(t-8)=6+2 | | -7(4x+5)=30 | | 3x+2x+1=5 | | s(s+12)=21 | | 20x^2+48x-19=0 | | 20x^2+48x+19=0 | | 3x-11=15+x | | 7−a=5 | | x^2+250x-375000=0 | | 10x+4=9x+4 | | 4x-9=2x-7 | | 130=58+r |